导读 华为AIOps使能服务加速新基建运维智能化转型 人工智能经历了六十多年的浮浮沉沉,随着计算算力的进步,算法的创

华为AIOps使能服务加速新基建运维智能化转型

人工智能经历了六十多年的浮浮沉沉,随着计算算力的进步,算法的创新和互联网发展下的海量数据积累,人工智能技术未来十年将焕发出新的活力,成为最具有冲击力的 科技 发展趋势之一。

kafka可视化(kafka可视化工具)kafka可视化(kafka可视化工具)


在HUAWEI CONNECT 2020期间,华为基于对电信领域的深刻理解和多年经验沉淀,带来了《AIOps使能服务》的分享,旨在结合电信领域应用场景,使能网络达到自动、自愈、自优和自治的自动驾驶网络,提升整个网络的效率,降低OPEX。

AIOps成为电信网络运维智能化转型趋势

随着“5G 新基建”的加速实施,数字经济发展迎来新的动能。不仅推动投资消费的快速成长,还将驱动各行业的数字化转型升级。随之而来的是网络问题复杂化与业务质量高要求的挑战,运维能力的演进成为电信网络能否持续发挥效能的关键因素。

电信网络运维作业正面临问题发现被动(75% 问题由用户发现),故障根因定位难(90% 时间用于问题定位)的业务挑战。同时,各专业运维支撑系统功能也面临开发周期长,闭环流程自动化程度低的技术瓶颈。因此,运营商期望引入AI实现智能运维,做到主动维护和故障自愈。

在运维支撑系统的演进方向上,AIOps(运用AI及大数据技术解决运维问题)已经成为电信行业运维智能化转型的趋势和共识:构建AIOps平台能力,支撑不同运维场景应用。在未来五年内,电信行业市场的运维系统和平台将加速AI能力的升级,成为电信领域AI应用的核心场景,投资占比达到60%。

因此,AIOps已经成为电信网络运维智能化转型趋势。通过构建电信领域AIOps平台能力,快速实现智能运维升级。

华为AIOps助力网络提升可靠性及使能智能化运维

按照自动驾驶网络的等级定义,运维的智能化目标是要实现全域、全流程的预测性运维,自动监控、定位、自愈。

华为AIOps使能服务作为自动驾驶网络AI引擎NAIE的核心能力,基于AI平台,提供了一系列的电信领域AIOps原子能力以及组合编排能力,使能网络管控析单元、智能运维解决方案等运维系统,最终帮助运营商打破原有的烟囱式建设方式,将各专业运维系统的应用与AI能力解耦,采用分层的服务化架构对接共享数据中心,集中提供AIOps能力,适配运维场景应用百花齐放的需求。

如下是华为AIOps使能服务预组合编排好的服务,可开箱即用:

kpi异常检测服务, 快速智能识别海量kpi/kqi的异常情况,广泛应用在网络性能和质量监控场景;

故障识别与根因定位服务, 根据海量告警结合对应网络拓扑和传播知识,实时识别故障及根因网元及告警,可自动学习知识规律,保证持续优化,可广泛应用在各种网络场景;

日志异常检测服务, 实现日志的自动分类和统计规律发掘,实时监控出系统的异常行为和相关日志,可广泛应用在IT及电信网络场景;

硬盘异常预测, 可智能预测短期内(14天)的硬盘故障,以采取规避预防措施,以免对业务产生影响,广泛支持主流厂商的HDD及SSD型号。

细数华为AIOps使能服务四大核心竞争力

提供丰富的AIOps原子能力: AIOps的原子能力覆盖运维全流程,包括预测、检测,定位、执行。原子能力库支持流量预测,故障预测,KPI异常检测,日志异常检测,CHR异常检测,异常关联分析,事件聚合,根因定位等20+原子能力。

作为电信领域的AIOps使能服务,具备两个核心特点:一是基于华为电信领域的经验,原子能力将AI算法与电信领域行业知识融合,预制了默认的电信领域模型参数,同时支持现网运行态的调优,解决当前通用算法模型在具体行业落地效果差的难题。目前,已经在现网得到了规模验证。

另一个是AIOps原子能力采用标准化模型规范,统一数据输入,参数配置,结果输出等接口。为AIOps单点原子能力到灵活的组合串接提供了基础。

组合编排与DevOps能力: 通过组合编排功能,使用者可选择业务场景所需的AIOps原子能力,通过可视化方式完成流程串接,并进行业务泛化参数配置,包括数据接入方式,模型参数,内置电信领域泛化参数,事件通知方式、可视化Dashboard等配置。上述能力支持可视化编排或接口调用方式实现。此外,基于NAIE平台训练服务,AIOps的原子能力库支持使用者根据实际业务需求开展算法模型的创新与开发,不断扩展AIOps能力。NAIE的生态服务也提供专业的人员培训赋能。

支持电信领域数据对接: 支持KPI、告警、日志、xDR等电信领域主流运维数据。支持Kafka,数据库,文件系统,Restful等电信运维系统的主流数据对接方式。AIOps使能服务提供通用的数据源对接和标准化数据治理组件,通过配置项快速建立与运维系统的数据源连接,通过SDK将不同的数据类型和格式治理成标准化的AIOps原子能力输入集,用于模型训练和推理。

场景组合服务: 围绕运维全流程(发现、分析、处理)提供预制典型场景组合应用,快速接入运维流程。

综上所述,华为AIOps使能服务作为智能运维AI能力引擎,融合AI的技术优势与华为在电信领域的专业优势,为运维系统的智能化演进提供AIOps平台能力支持,助力到各专业运维系统的应用快速上线,让运维专家专注场景应用设计和业务目标达成。

华为AIOps助力运营商及企业网络打造最佳实践

在KPI异常检测方面,电信网络中,通过KPI来预测和检测网络问题是最普遍的场景。通过AI算法基于 历史 数据自动生成每个KPI的动态门限,避免传统静态门限带来的误报和漏报。

华为NAIE融合了电信领域的运维业务特点,提供单指标/多指标检测,异常原因关联分析,模型的自学习调优等关键能力。目前已经用在核心网,无线,数通等不同业务领域。国内某运营商采用了核心网KPI异常检测服务以后,实现提前5小时识别异常并主动预警,降低了业务损失。

在告警根因定位方面,发现异常或者故障之后的定位是运维流程中的难点,如何准确的将多维度的异常、告警等事件进行汇聚,减少故障噪声,准确定位到具体原因?这些工作目前主要依赖专家经验或者手工分析,而且受限于分析算力和知识信息,效果并不好。

华为NAIE AIOps通过AI算法与业务的融合,支持多类异常/告警等事件的智能故障定位,自动实现时间,拓扑和故障传播图等维度的事件汇聚和根因定位。目前已经应用到无线接入网等业务领域,经过实际验证,无效上站减少60%,根因识别准确率85%+,运维效率整体提升15%。

写在最后,电信领域AIOps落地的关键是需要将行业知识与AI技术融合。网络运维系统的AIOps能力构建的趋势是业务与能力解耦,做到AIOps能力的复用、拉通,支持,适配运维场景应用百花齐放和快速上线迭代的需求。

因此,AIOps使能服务作为智能运维AI能力引擎,融合AI的技术优势与华为在电信领域的专业优势,为运维系统的智能化演进提供AIOps平台能力支持,助力到各专业运维系统的应用快速上线,让运维专家专注场景应用设计和业务目标达成。目前,华为AIOps使能服务已经在无线,核心网,数通等网络域得到了广泛的应用。

OpenTelemetry、Spring Cloud Sleuth、Kafka、Jager实现分布式跟踪

分布式跟踪可让您深入了解特定服务在分布式软件系统中作为整体的一部分是如何执行的。它跟踪和记录从起点到目的地的请求以及它们经过的系统。

在本文中,我们将使用 OpenTelemetry、Spring Cloud Sleuth、Kafka 和 Jaeger 在三个 Spring Boot 微服务 中实现分布式跟踪。

我们先来看看分布式追踪中的一些基本术语。

跨度:表示系统内的单个工作单元。跨度可以相互嵌套以模拟工作的分解。例如,一个跨度可能正在调用一个 REST 端点,然后另一个子跨度可能是该端点调用另一个,等等在不同的服务中。

Trace:所有共享相同根跨度的跨度集合,或者更简单地说,将所有跨度创建为原始请求的直接结果。跨度的层次结构(每个跨度在根跨度旁边都有自己的父跨度)可用于形成有向无环图,显示请求在通过各种组件时的路径。

OpenTelemetry ,也简称为 OTel,是一个供应商中立的开源 Observability 框架,用于检测、生成、收集和导出遥测数据,例如 跟踪 、 指标 和 日志 。作为 云原生 计算基金会 (CNCF) 的孵化项目,OTel 旨在提供与供应商无关的统一库和 API 集——主要用于收集数据并将其传输到某处。OTel 正在成为生成和管理遥测数据的世界标准,并被广泛采用。

Sleuth 是一个由 Spring Cloud 团队管理和维护的项目,旨在将分布式跟踪功能集成到 Spring Boot 应用程序中。它作为一个典型Spring Starter的 . 以下是一些开箱即用的 Sleuth 工具:

Sleuth 添加了一个拦截器,以确保在请求中传递所有跟踪信息。每次调用时,都会创建一个新的 Span。它在收到响应后关闭。

Sleuth 能够跟踪您的请求和消息,以便您可以将该通信与相应的日志条目相关联。您还可以将跟踪信息导出到外部系统以可视化延迟。

Jaeger 最初由 Uber 的团队构建,然后于 2015 年开源。它于 2017 年被接受为云原生孵化项目,并于 2019 年毕业。作为 CNCF 的一部分,Jaeger 是云原生 架构 中公认的项目。它的源代码主要是用 Go 编写的。Jaeger 的架构包括:

与 Jaeger 类似,Zipkin 在其架构中也提供了相同的组件集。尽管 Zipkin 是一个较老的项目,但 Jaeger 具有更现代和可扩展的设计。对于此示例,我们选择 Jaeger 作为后端。

让我们设计三个 Spring Boot 微服务:

这三个微服务旨在:

这是为了观察 OpenTelemetry 如何结合 Spring Cloud Sleuth 处理代码的自动检测以及生成和传输跟踪数据。上面的虚线捕获了微服务导出的跟踪数据的路径,通过OTLP(OpenTelemetry Protocol)传输到OpenTelemetry Collector,收集器依次处理并将跟踪数据导出到后端Jaeger进行存储和查询。

使用 monorepo,我们的项目结构如下:

第 1 步:添加 POM 依赖项

这是使用 OTel 和 Spring Cloud Sleuth 实现分布式跟踪的关键。我们的目标是不必手动检测我们的代码,因此我们依靠这些依赖项来完成它们设计的工作——自动检测我们的代码,除了跟踪实现、将遥测数据导出到 OTel 收集器等。

第 2 步:OpenTelemetry 配置

OpenTelemetry 收集器端点

对于每个微服务,我们需要在其中添加以下配置application.yml(请参阅下面部分中的示例片段)。spring.sleuth.otel.exporter.otlp.endpoint主要是配置OTel Collector端点。它告诉导出器,在我们的例子中是 Sleuth,通过 OTLP 将跟踪数据发送到指定的收集器端点http://otel-collector:4317。注意otel-collector端点 URL 来自otel-collector图像的 docker-compose 服务。

跟踪数据概率抽样

spring.sleuth.otel.config.trace-id-ratio-based属性定义了跟踪数据的采样概率。它根据提供给采样器的分数对一部分迹线进行采样。概率抽样允许 OpenTelemetry 跟踪用户通过使用随机抽样技术降低跨度收集成本。如果该比率小于 1.0,则某些迹线将不会被导出。对于此示例,我们将采样配置为 1.0、100%。

有关其他 OTel Spring Cloud Sleuth 属性,请参阅常见应用程序属性。

OpenTelemetry 配置文件

我们需要项目根目录下的 OTel 配置文件otel-config.yaml。内容如下。此配置文件定义了 OTel 接收器、处理器和导出器的行为。正如我们所看到的,我们定义了我们的接收器来监听 gRPC 和 HTTP,处理器使用批处理和导出器作为 jaeger 和日志记录。

第 3 步:docker-compose 将所有内容串在一起

让我们看看我们需要启动哪些 docker 容器来运行这三个微服务并观察它们的分布式跟踪,前三个微服务在上面的部分中进行了解释。

运行docker-compose up -d以调出所有九个容器:

第 4 步:追踪数据在行动

快乐之路

现在,让我们启动customer-service-bff流程的入口点,以创建新客户。

启动 Jaeger UI, [url= Traces按钮,这是我们看到的创建客户跟踪:它跨越三个服务,总共跨越六个,持续时间 82.35 毫秒。

除了 Trace Timeline 视图(上面的屏幕截图),Jaeger 还提供了一个图形视图(Trace Graph在右上角的下拉菜单中选择):

三个微服务在 docker 中的日志输出显示相同的跟踪 id,以红色突出显示,并根据其应用程序名称显示不同的跨度 id(应用程序名称及其对应的跨度 id 以匹配的颜色突出显示)。在 的情况下customer-service,相同的 span id 从 REST API 请求传递到 Kafka 发布者请求。

customer-service让我们在 docker 中暂停我们的PostgreSQL 数据库,然后重复从customer-service-bff. 500 internal server error正如预期的那样,我们得到了。检查 Jaeger,我们看到以下跟踪,异常堆栈跟踪抱怨SocketTimeoutException,再次如预期的那样。

识别长期运行的跨度

Jaeger UI 允许我们搜索超过指定最大持续时间的跟踪。例如,我们可以搜索所有耗时超过 1000 毫秒的跟踪。然后,我们可以深入研究长期运行的跟踪以调查其根本原因。

在这个故事中,我们从 OpenTelemetry、Spring Cloud Sleuth 和 Jaeger 的角度解压了分布式跟踪,验证了 REST API 调用和 Kafka pub/sub 中分布式跟踪的自动检测。我希望这个故事能让你更好地理解这些跟踪框架和工具,尤其是 OpenTelemetry,以及它如何从根本上改变我们在 分布式系统 中进行可观察性的方式。

大数据培训课程介绍,大数据学习课程要学习哪些

以下介绍的课程主要针对零基础大数据工程师每个阶段进行通俗易懂简易介绍,方面大家更好的了解大数据学习课程。课程框架是科多大数据的零基础大数据工程师课程。

一、 第一阶段:静态网页基础(HTML+CSS)

1. 难易程度:一颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等

4. 描述如下:

从技术层面来说,该阶段使用的技术代码很简单、易于学习、方便理解。从后期课程层来说,因为我们重点是大数据,但前期需要锻炼编程技术与思维。经过我们多年开发和授课的项目经理分析,满足这两点,目前市场上最好理解和掌握的技术是J2EE,但J2EE又离不开页面技术。所以第一阶段我们的重点是页面技术。采用市场上主流的HTMl+CSS。

二、 第二阶段:JavaSE+JavaWeb

1. 难易程度:两颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)JDBC、线程、反射、Socket编程、枚举、泛型、设计模式

4. 描述如下:

称为Java基础,由浅入深的技术点、真实商业项目模块分析、多种存储方式的设计

与实现。该阶段是前四个阶段最最重要的阶段,因为后面所有阶段的都要基于此阶段,也是学习大数据紧密度最高的阶段。本阶段将第一次接触团队开发、产出具有前后台(第一阶段技术+第二阶段的技术综合应用)的真实项目。

三、 第三阶段:前端框架

1. 难易程序:两星

2. 课时量(技术知识点+阶段项目任务+综合能力):64课时

3. 主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui

4. 描述如下:

前两个阶段的基础上化静为动,可以实现让我们网页内容更加的丰富,当然如果从市场人员层面来说,有专业的前端设计人员,我们设计本阶段的目标在于前端的技术可以更直观的锻炼人的思维和设计能力。同时我们也将第二阶段的高级特性融入到本阶段。使学习者更上一层楼。

四、 第四阶段:企业级开发框架

1. 难易程序:三颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webServiceCXF、Tomcat集群和热备、MySQL读写分离

4. 描述如下:

如果将整个JAVA课程比作一个糕点店,那前面三个阶段可以做出一个武大郎烧饼(因为是纯手工-太麻烦),而学习框架是可以开一个星巴克(高科技设备-省时省力)。从J2EE开发工程师的任职要求来说,该阶段所用到的技术是必须掌握,而我们所授的课程是高于市场(市场上主流三大框架,我们进行七大框架技术传授)、而且有真实的商业项目驱动。需求文档、概要设计、详细设计、源码测试、部署、安装手册等都会进行讲解。

五、 第五阶段: 初识大数据

1. 难易程度:三颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapReduce应用(中间计算过程、Java操作MapReduce、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)

4. 描述如下:

该阶段设计是为了让新人能够对大数据有一个相对的大概念怎么相对呢?在前置课程JAVA的学习过后能够理解程序在单机的电脑上是如何运行的。现在,大数据呢?大数据是将程序运行在大规模机器的集群中处理。大数据当然是要处理数据,所以同样,数据的存储从单机存储变为多机器大规模的集群存储。

(你问我什么是集群?好,我有一大锅饭,我一个人可以吃完,但是要很久,现在我叫大家一起吃。一个人的时候叫人,人多了呢? 是不是叫人群啊!)

那么大数据可以初略的分为: 大数据存储和大数据处理所以在这个阶段中呢,我们课程设计了大数据的标准:HADOOP大数据的运行呢并不是在咋们经常使用的WINDOWS 7或者W10上面,而是现在使用最广泛的系统:LINUX。

六、 第六阶段:大数据数据库

1. 难易程度:四颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)

4. 描述如下:

该阶段设计是为了让大家在理解大数据如何处理大规模的数据的同时。简化咋们的编写程序时间,同时提高读取速度。

怎么简化呢?在第一阶段中,如果需要进行复杂的业务关联与数据挖掘,自行编写MR程序是非常繁杂的。所以在这一阶段中我们引入了HIVE,大数据中的数据仓库。这里有一个关键字,数据仓库。我知道你要问我,所以我先说,数据仓库呢用来做数据挖掘分析的,通常是一个超大的数据中心,存储这些数据的呢,一般为ORACLE,DB2,等大型数据库,这些数据库通常用作实时的在线业务。

总之,要基于数据仓库分析数据呢速度是相对较慢的。但是方便在于只要熟悉SQL,学习起来相对简单,而HIVE呢就是这样一种工具,基于大数据的SQL查询工具,这一阶段呢还包括HBASE,它为大数据里面的数据库。纳闷了,不是学了一种叫做HIVE的数据“仓库”了么?HIVE是基于MR的所以查询起来相当慢,HBASE呢基于大数据可以做到实时的数据查询。一个主分析,另一个主查询

七、 第七阶段:实时数据采集

1. 难易程序:四颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化

4. 描述如下:

前面的阶段数据来源是基于已经存在的大规模数据集来做的,数据处理与分析过后的结果是存在一定延时的,通常处理的数据为前一天的数据。

举例场景:网站防盗链,客户账户异常,实时征信,遇到这些场景基于前一天的数据分析出来过后呢?是否太晚了。所以在本阶段中我们引入了实时的数据采集与分析。主要包括了:FLUME实时数据采集,采集的来源支持非常广泛,KAFKA数据数据接收与发送,STORM实时数据处理,数据处理秒级别

八、 第八阶段:SPARK数据分析

1. 难易程序:五颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性

4. 描述如下:

同样先说前面的阶段,主要是第一阶段。HADOOP呢在分析速度上基于MR的大规模数据集相对来说还是挺慢的,包括机器学习,人工智能等。而且不适合做迭代计算。SPARK呢在分析上是作为MR的替代产品,怎么替代呢? 先说他们的运行机制,HADOOP基于磁盘存储分析,而SPARK基于内存分析。我这么说你可能不懂,再形象一点,就像你要坐火车从北京到上海,MR就是绿皮火车,而SPARK是高铁或者磁悬浮。而SPARK呢是基于SCALA语言开发的,当然对SCALA支持最好,所以课程中先学习SCALA开发语言。

在科多大数据课程的设计方面,市面上的职位要求技术,基本全覆盖。而且并不是单纯的为了覆盖职位要求,而是本身课程从前到后就是一个完整的大数据项目流程,一环扣一环。

比如从历史数据的存储,分析(HADOOP,HIVE,HBASE),到实时的数据存储(FLUME,KAFKA),分析(STORM,SPARK),这些在真实的项目中都是相互依赖存在的。

如需大数据培训推荐选择【达内教育】,大数据学习课程如下:

目前大数据培训机构提供的课程大约有两种:一是大数据开发,二是数据分析与挖掘。大数据培训一般指大数据开发,不需要数学和统计学基础,学习的内容大概有:

0基础:

第一阶段: Java开发·

第二阶段: 大数据基础·

第三阶段: Hadoop生态体系·

第四阶段: Spark生态系统·

第五阶段: 项目实战

提高班:

第一阶段:大数据基础·

第二阶段:Hadoop生态体系·

第三阶段:Spark生态系统·

第四阶段:项目实战

链接:

提取码: k2g2

信息平台在大数据领域应用实践综合分析的基础上,结合信息系统、决策支持等理论,从背景趋势、体系框架、理论方法、决策分析、应用现状等方面,全面、详细地对交通物流大数据决策分析体系进行了系统介绍。

怎么学习大数据课程?零基础大数据学习要学两部分:java+大数据 有基础提高课程直接上大数据的相关课程,hadoop、hive、hbase这些 网上有很多的教程 。

学习课程大纲

难易程度:一颗星

2. 课时量(技术知识点+阶段项目任务+综合能力)

3. 主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等

大数据工程师的日常工作内容有哪些?

数据采集: 业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。

数据清洗: 一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。

一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。 一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。

数据存储: 清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。

数据分析统计: 数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。

数据可视化: 用数据表格、数据图等直观的形式展示上游"数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据。

大数据开发和大数据可视化哪个好

大数据开发的学习内容中包含可视化,掌握了大数据的开发技术,也可以从事可视化的相关工作。

基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。大数据存储阶段:hbase、hive、sqoop。大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。大数据实时计算阶段:Mahout、Spark、storm。大数据数据采集阶段:Python、Scala。大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。

大数据技术人员的就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。

工作岗位:ETL研发、Hadoop开发、可视化(前端展现)工具开发、信息架构开发、数据仓库研究、OLAP开发、数据预测(数据挖掘)分析、企业数据管理、数据安全研究、数据科学研究等。

大数据开发前景是很不错的,像大数据开发这样的专业还是一线城市比较好,师资力量跟得上、就业的薪资也是可观的,学大数据开发面授班的时间大约半年,学习大数据开发可以按照路线图的顺序,